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ABSTRACT
We find necessary and sufficient conditions for the factor groups of the
derived series of a pro-p-group with a single defining relation to be torsion
free. For such groups G' we prove that the group algebra Z,G is a domain
and the cohomological dimension of G is at most 2.

1. Introduction

Let F be a free pro-p-group with a basis X, and let r be an element of F. Then
a pro-p-group with a single defining relation G = (X|r) is the factor group F/rF,
where r¥ is the closed normal subgroup of F generated by the element r. It is
natural for pro-p-groups with a single defining relation to try to prove statements
which are similar to the classical facts about abstract groups with a single defining
relation. When r is not a p-th power of any element of F, Serre has asked whether
the cohomological dimension ¢d G is less than or equal to 2 (see, for instance,
Gildenhuys [1]). Gildenhuys has constructed a counter-example to this conjecture
which shows also that the direct analog of the Magnus’ Freiheitssatz does not
hold for pro-p-groups. Nevertheless, it follows from Romanovskii [2] that there
is some element z € X such that the elements from X \ {z} freely generate, in
G, a free pro-p-group. If we define an equivalence relation by r ~ s if and only if
r¥ = sF it seems reasonable that one can improve Serre’s conjecture to within

this equivalence class.
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Everywhere in the sequel such terms as subgroups, factor groups and so forth
will be regarded in the sense of topological groups. For a pro-p-group G, G(™
will denote the n-th commutator subgroup of G. A subset S of G is called a
system of generators if S generates the pro-p-group G and every neighborhood
of the unit of G contains almost all elements of S. A free system of generators of
a free pro-p-group (or free abelian pro-p-group) is called a basis of this group. If
a pro-p-group G is a projective limit of finite p-groups G;, then a group algebra
Z,G over the ring of p-adic integers Z,, is defined as lim Z,[G;].

In this paper we shall prove the following. -

THEOREM: Let F be a free pro-p-group with a basis X, let r be an element
of F and let G = (X|r) be a pro-p-group with a single defining relator. Let
r € F(O\ F+1) Then the factors of the derived series G |GV of the
group G are torsion free if and only if the element r is not a p-th power of an
element of F(*) modulo F*tY) | in which case the group algebra Z,G is a domain
and cdG < 2.

We note that the corresponding results about the lower central series of pro-

p-groups with a single defining relator follow from Labute’s article [3].

2. Profinite Z,-modules

If A is an abelian pro-p-group then one can define on A a structure of a topological
Z,-module, which we will call a profinite Z,-module. So the class of profinite
Z,-modules is closed under direct products and projective limits. The usual
operation of tensor product does not apply in this class. Therefore it is natural

to give the following:

Definition: Let A, B be two profinite Zy-modules. We represent them as pro-
jective limits of finite modules: A = limA; , B = limB;. Then the tensor
product A ® B is defined to be the module lim 4; ® B;. ]

The validity of this definition is verified by the usual arguments, as well as the

following properties of the tensor product :

A0z, 24, J[Ao][Bi=]](4®By),
k i k|l

(1)
lim A ® lim B; 2 lim A; ® By.
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Here [] means the direct product in the category of projective Z,-modules.

It is known that any profinite torsion free Z,-module is free, i.e. it has a
basis — a free system of generators converging to zero. Let A4, B be free modules
with bases {a;}, {b;} respectively. Then it follows from (1) that A ® B is a free
Z,-module with basis {a; ® b;}.

LEMMA 1: Let A be a normal subgroup of a pro-p-group G and let B = G/A.
Then the group algebra Z,G is isomorphic, as Zy-module, to the tensor product
Z,B ® Z,A.

This statement follows easily from the fact that it is true for a finite p-group

G.

3. Group algebras for some pro-p-groups

Let A be a free abelian pro-p-group with a countable basis {a;, as,...}. It follows
from Lazard [4] that the group algebra ZyA is the algebra of formal series of
the form u = },, ymM, where yp € Z, and M is a monomial of the form
(1 =a1)* (1 —an)™, ai € {0,1,2,...}. As a basis of neighborhoods of zero,
we can choose the ideals p"Z,A + Uy, where U, consists of series whose terms
are monomials of degree > n or whose terms contain a nontrivial factor 1 — a;,
where ¢ > n.

Now let G be a pro-p-group of countable type with a normal series
CG=G1>G2>-->Gs> G471 =1,

whose factor groups 4; = G;/Gi41 are free abelian pro-p-groups. Since the
intersection of the members of the lower central series of G is equal to 1, in every
group G; one can choose a sequence of elements a;1, a2, ... converging to 1 whose

canonical images in the abelian group A; constitute a basis, and satisfying
(2) [G,aij] < (aij+1, 8542, . YGE Gigr.

Consider a formal series u = Y, yMM, where vy € Zp, M = My -+ My, M;
are monomials of the form (1 - a;;)*? --- (1 — ai» ). Since any neighborhood of
zero in the algebra Z,G contains almost all monomials M, the series u represents
some element of this algebra. By Lemma 1, as a Z,-module, Z,G decomposes
into the tensor product Z,A; ® ZpA2 @ -+ @ ZyA,. Using the representation of
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elements of the algebras Z,A; as series we can state that the representation of
elements of the algebra Z,G as formal series is faithful. We define an order of
monomials by M --- M, < Mj - -- M} if for some i:

M; =(1 - a.'l)a'l o -(1 - a.',.)a" 94 M: = (1 - a..'l)ﬁl (1 - a,',,)ﬁ",

M, =M;,...,M|'+1 = M{+l’

and eitherayj + - +ap <fi1+: -+ Pnyorar+---+ap=0 +---+ fn and
for some j ap = f,..., 0541 = PBit1,a;5 < ;.

Let u € p*Z,G \ p**'Z,G. For the series u we consider those monomials M
for which vy ¢ p*+'Z,, and among these we choose Mj, the minimal one. The
term yp, My is called the lowest term of the element u.

LEMMA 2: Let u,v be non-zero elements of Z,G, and let ymM, --- M, and
YyM] -+ M, be their lowest terms respectively. Then ypvyy My --- My will be
the lowest term of the element uv, where M!' = (1 —a;;)*'*#1 ... (1 — a;,) ¥ +Fn
Mi=(1-ain)* - (1-ais)* and M =(1- (1.,‘1)/’1 (1= a,',.)ﬁ".

Proof: Let H be an arbitrary open normal subgroup of the group G. Let I
be the kernel of the canonical homomorphism Z,G — (Z/p"Z)[G/H] where r is
a fixed natural number. Modulo the ideal I the elements u,v are represented
as finite linear sums of monomials. It is sufficient to prove that, modulo I, the
product of these sums is equal to a linear sum of monomials with the lowest term
MY My -+ M. Then passing to the projective limit we get a representation
of the element uv as a series with the corresponding lowest term.

We first define a “collecting process” with the help of which one can represent
an arbitrary unordered product of the elements 1 — @;; modulo I as a linear sum
of ordered products which we call monomials. Let L be an arbitrary unordered
product of the elements 1 — a;;. We denote by L the ordered monomial obtained
from L using permutations of factors. We distinguish unordered factors (1 — a;;)
and (1 — ag) in L = Ly(1 — ai;)(1 — art) L2, where either ¢ > k,ori =k, j > 1.
We use the following standard identities which hold in an arbitrary group ring R
for all elements z,y of the group:

l-zy =(1-2)+(1-y)-(1-2)(1-y),
1-2P =(1-2)" modpR,
(1-y)1-2) =(1-2)(1-y) - (1 -[zy]) + (1 - 2y)1 - [z,9]).
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With the help of these identities, together with the inclusions (2), we can repre-

sent the element L modulo I as

L=1L(1~au)l-aij)l: + ZUth,
t

where {K:} is some finite set of unordered products, o, € Z,, and either o, is
divisible by p, or the corresponding K, is such that K; > L. Thus, modulo
higher terms we could interchange the factors 1 — a;; and 1 — ai;. Therefore the

collecting process is defined and the lemma is proved. ]

COROLLARY: Let G be a pro-p-group of countable type with a normal series
G=G12G; 2 2Gn 2 Gny1 2 -+, such that (|G, = 1 and the factor
groups G, /Gny4, are torsion free abelian pro-p-groups. Then the group algebra
Z,G is a domain.

Proof: 1t follows directly from Lemma 3 that the algebras Z,[G/G,] are do-
mains. So the algebra Z,G has this property since it has a representation as a
projective limit lim Z,{G/G,). [ |

4. Magnus’ embedding for pro-p-groups

Let F be a free pro-p-group with a finite basis {z1,...,z}, N a normal sub-
group, and ¢ : F — A = F/N the canonical homomorphism. We consider the
right free (topological) module T' with a basis {t1,...,tm} over the ring Z,A.
This gives rise to a natural extension of the additive group of the module T by
the group A, which we shall identify with the multiplicative group of matrices:

73]

Let ¢ be the homomorphism from F' to this group determined by the mapping

1 0 Im@ 0
zl—»[tl 1],...,zm—»[tm 1].

By analogy with abstract groups Remeslennikov [5] proved that ker ¢ = [N, N].
The following statement for pro-p-groups is transferred from the corresponding

statement proved in [6] for abstract groups without change.
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LEMMA 3: Let H be a normal subgroup of F generated by the elements h;. Let

hip = [Z: (1)] and let B be the normal subgroup of [; (1)] generated by all

a; 0 1 0 _
e]ements[0 1], ['Ui 1}. Then B(\Fy = Hy.

This lemma gives a convenient method to study the factor groups of F/[N, N].
Indeed, the factor group of [; (1)} by the normal subgroup generated by the

a; !

0 (1) ;, (1)] , where A’ = F/NH and T" is the free
Z,A'-module of rank m. By Lemma 3 the group F/[N, N]H will be embedded

!

elements is isomorphic to

/L (1)] , where L is the submodule of the module T' generated
by the canonical images of the elements v;.

into the group [T{i

5. Proof of the theorem

We have G = F/R, where R = rF is the normal subgroup of F generated by an

element r.

5.1. First assume that there is an element s of F(¥) such that r = sPmod F(¥+1),
Note that then the factor group G*)/G(*+1) has torsion. To see this let us
denote by ¢ the canonical homomorphism F — F/F(*+1) The group Fy acts
by conjugation on F(F¢. This action extends to the action of the group algebra
Z,[Fyp]. From this point of view Ry is the right Z,[Fp]-module generated by
the element rp. We have, in the module language, (sp)p = ry¢. Assume that
sp € Ryp. Then there is an element u of Z,[Fy] such that sp = (re)u. This
means that so(1 — pu) = 0. The element 1 — pu is invertible in the algebra
Z,[Fy]. Therefore sp = 0, which contradicts the fact that r € F(F \ Flk+1),
Therefore s ¢ R and the group G /G(*+1) has torsion.

5.2. Now we come to the most difficult part of the proof of the theorem. Assume
that the element r is not a p-th power of an element of F(¥) modulo F(*+1)_ It
is sufficient to prove that the factors of the derived series of G are torsion free,
and the group algebra Z,G is a domain. This together with Brumer [7] yields
cdG <2

We first reduce the problem to the case when X is a finite set. Indeed, let
{Xa} be the finite subsets of X, Fy be the free pro-p-group with the basis X,
¢o be an endomorphism F — F,, which is the identity on F, and which maps
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the elements of X \ X, to 1. It is obvious that F = lim F,,, G = lim G, where
Go = (Xa|r@a). Therefore there is an index ap such‘_that the ele;lent TOa, 1S
not a p-th power of an element of F,S,’;) modulo Fg;“) . Consider the union {Xz}
of all finite subsets of X containing X,,. We have for every f the condition that
the element r¢g is not a p-th power of an element of F/gk) modulo F/_,SHI). If
we prove that the factors of the derived series of the groups G are torsion free,
then the factors of the derived series of the group G = lim Gy must be torsion
free, and by the corollary of the Lemma 2 the algebras Z:Gg are domains and
therefore the algebra Z,G = li‘r_n Z,Gp is also a domain.

So let X = {z1,...,zm} be a finite set and let the element r satisfy the
condition of the theorem. We must prove that the factors of the derived series of

G are torsion free.

Let F, = F/F("), Gn. = G/G(") and let ¢,, ¥, denote the canonical homo-
morphisms F — F,,, G — G, correspondingly. It is obvious that F}, = Gk. Let
T be a free right module with a base {t1,...,tm} over the ring Z,Fi. By the
Magnus’ embedding we identify the group Fi4; with the subgroup of the group

[I;f (1)] generated by the matrices [Il;lpk (1)] 3eees {-’B,tntpk (1)] Then the ele-

ment rgg4; is represented as some matrix where u = tjuy +-+ +tptm.

1 Y
From [4] we have the equality, (1 — 219k )u1 + - + (1 — Zmpr)um = 0. We note
that there is an element u; which is not divisible by p. Otherwise if u; = pv; then

(1 —z190k)v1 + -+ + (1 = Tm@k)vm = 0 and this means by [5] that the matrix

10 . 1 0]? 10
[v 1] €F,Ei)l,wherev=t1v1+---+tmvm. Since [v 1] =[u 1] we

have a contradiction to the fact that r is not a p-th power of an element of F(¥)
modulo F(:+1),

Now let n > k and assume by the induction that the factors of the derived series

of the group G, are torsion free. Denote by T' the free right module with basis
{t},...,1,} over thering Z,G,. Let o denote the homomorphism F — [i’,‘ (1)]

defined by the mapping z; — [xlt:f’" (1)] e B — [x';¢n (1)]

It is clear that the element ro is a unitriangular matrix [J, ], where u' =

1
tiul +---+ t),u),. The canonical homomorphism G, — F; and the mapping
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1 — t1,...,th, — ty define the homomorphism of matrix groups

. [Gh 0] [F 0O
o T 1]

0 ;= 10
11 7 1
the module T is not divisible by p, the element u' is also not divisible by p in

We have w41 = o7. Therefore [:, ] Since the element u of

the module 7. By Lemma 3 the group G,4; is embedded into the group of
0
n

T/L 1
the element u’, and the last nontrivial commutator subgroup GS:?I of the group
Gr41 is embedded into the additive group of the factor module T'/L. For the

next inductive step it is sufficient to prove that the module T'/L is torsion free.

matrices [ ], where L is the submodule of the module T generated by

For, otherwise there is an element v of 7' which does not belong to L and vp € L.
Let vp = u'w, where w € Z,G,. In Section 2 we found the representation of the
elements of the algebra Z,G by series. Since some element ] does not belong to
PZyGy, its lowest term is not divisible by p. Since the lowest term of the product
ujw is divisible by p, by Lemma 2 the lowest term of the element w is divisible by
p. Thus all coefficients of the series w are divisible by p. Then w = pw', where
w' € ZyG,. We have vp = u'w'p and v = u'w’, contrary to the fact v ¢ L. This

completes the proof of the theorem.
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